DU Big data et statistique pour l'ingénieur par BORDEAUX INP
Lieu(x)
En centre (33)
Durée
Total : 164 heures
En centre : 164 heures
Financement
Demandeur d’emploi
Salarié
Prix
Nous contacter
Cette formation vous intéresse ?
Description générale
Session 1 :
- Enjeux socio
- économiques du Big Data.
- Introduction à la Statistique.
- Statistique descriptive univariée et bivariée.
- Initiation au logiciel statistique R.
Session 2 :
- Statistique inférentielle : estimateurs, intervalles de confiance et tests d'hypothèses paramétriques et non paramétriques.
- Illustration à l'aide du logiciel R.
Session 3 :
- Statistique multidimensionnelle : analyse en composantes principales, analyse factorielle des correspondances, analyse des données mixtes, analyse discriminante, classification automatique (clustering), classification de variables, réseaux de neurones.
- Illustration à l'aide du logiciel R.
Session 4 :
- Big Data : stockage de très grands volumes de données dans des architectures passant à l'échelle, calcul parallèle, méthodologie adaptée, etc.
- Mise en oeuvre pratique.
Session 5 :
- Modélisation statistique : régression linéaire simple et régression linéaire multiple, analyse de la variance (ANOVA), analyse de la covariance (ANCOVA).
- Illustration à l'aide du logiciel R.
Session 6 :
- Modélisation statistique : forêts aléatoires, régression non paramétrique, régression semi paramétrique.
- Illustration à l'aide du logiciel R.
Session 7 :
- Etudes de cas.
- Deep learning.
- Analyse des données du web et gestion de la qualité des données.
- Enjeux socio
- économiques du Big Data.
- Introduction à la Statistique.
- Statistique descriptive univariée et bivariée.
- Initiation au logiciel statistique R.
Session 2 :
- Statistique inférentielle : estimateurs, intervalles de confiance et tests d'hypothèses paramétriques et non paramétriques.
- Illustration à l'aide du logiciel R.
Session 3 :
- Statistique multidimensionnelle : analyse en composantes principales, analyse factorielle des correspondances, analyse des données mixtes, analyse discriminante, classification automatique (clustering), classification de variables, réseaux de neurones.
- Illustration à l'aide du logiciel R.
Session 4 :
- Big Data : stockage de très grands volumes de données dans des architectures passant à l'échelle, calcul parallèle, méthodologie adaptée, etc.
- Mise en oeuvre pratique.
Session 5 :
- Modélisation statistique : régression linéaire simple et régression linéaire multiple, analyse de la variance (ANOVA), analyse de la covariance (ANCOVA).
- Illustration à l'aide du logiciel R.
Session 6 :
- Modélisation statistique : forêts aléatoires, régression non paramétrique, régression semi paramétrique.
- Illustration à l'aide du logiciel R.
Session 7 :
- Etudes de cas.
- Deep learning.
- Analyse des données du web et gestion de la qualité des données.
Objectifs
- Former aux bases de la statistique et à l'utilisation des méthodes et outils statistiques les ingénieurs de l'industrie, de la santé, des transports, des services ou de la défense, confrontés à des problèmes de traitement des données et à leur compréhension.
- Sensibiliser les acteurs aux problématiques et outils actuels et futurs du Big Data.
- Permettre la compréhension des domaines d'application de la statistique et du traitement des données.
- Mettre en oeuvre les méthodes.
- Maîtriser les outils statistiques, pour des applications concrètes dans l'entreprise.
- Sensibiliser les acteurs aux problématiques et outils actuels et futurs du Big Data.
- Permettre la compréhension des domaines d'application de la statistique et du traitement des données.
- Mettre en oeuvre les méthodes.
- Maîtriser les outils statistiques, pour des applications concrètes dans l'entreprise.
Centre(s)
- Talence (33)
Métier(s)
- Analyste en intelligence économique
- Analyste prix / pricing
- Assistant chargé / Assistante chargée d'études socio-économiques
- Attaché / Attachée d'études statistiques
- Chargé / Chargée d'études commerciales
- Chargé / Chargée d'études de marché
- Chargé / Chargée d'études en marketing
- Chargé / Chargée d'études financières
- Chargé / Chargée d'études prospectives
- Chargé / Chargée d'études satisfaction
- Chargé / Chargée d'études socio-économiques
- Chargé / Chargée d'études statistiques
- Chargé / Chargée d'études économiques
- Chargé / Chargée d'études économiques et sociales
- Chargé / Chargée d'études économiques et statistiques
- Chef de groupe études socio-économiques
- Chef de projet études socio-économiques
- Chef de service études socio-économiques
- Data analyst
- Data miner
- Data scientist
- Directeur / Directrice d'études socio-économiques
- Directeur / Directrice d'études économiques
- Ingénieur / Ingénieure économiste en entreprise
- Ingénieur statisticien / Ingénieure statisticienne
- Responsable d'études socio-économiques
- Responsable d'études économiques
- Responsable de veille stratégique
- Responsable prévision des ventes
- Statisticien / Statisticienne
- Économiste d'entreprise
- Économètre
Compétence(s)
- Algorithmique
- Aménagement du territoire
- Analyse financière
- Analyse statistique
- Big data analytics
- Développement économique
- Gestion budgétaire
- Gestion commerciale, relation clients
- Gestion de projet
- Gestion des Ressources Humaines
- Insights marketing
- Intelligence économique
- Langages de programmation informatique
- Logiciel de conception et analyse d'enquête
- Logiciels de gestion de base de données
- Logiciels de modélisation et simulation
- Logiciels de statistiques
- Management
- Marché de l'emploi
- Marketing / Mercatique
- Modélisation statistique
- Modélisation économique
- Méthodes d'enquête
- Méthodes de prospective
- Outils bureautiques
- Outils de Business Intelligence (BI)
- Sciences économiques et sociales
- Techniques commerciales
- Techniques de benchmarking
- Techniques de conduite d'entretien
- Techniques de mesure d'audience
- Techniques de sondage d'opinions
- Urbanisme
- Économie du développement durable
- Économétrie
Formation proposée par : BORDEAUX INP
À découvrir