Mathématiques et applications - Mention :Master - Parcours :Master Mathematiques et applications Parcours RESEARCH AND INNOVATION par Université Toulouse III - Paul Sabatier - Mission Formation Continue et Apprentissage

Lieu(x)
En centre (31)
Durée
Total : 2600 heures
En centre : 1900 heures
En entreprise : 700 heures
Financement
Demandeur d’emploi
Prix
Nous contacter
Cette formation vous intéresse ?
Description générale
Syllabus du M1 MAT
- ESR
Syllabus du M2 MAT
- RI
Objectifs
L#0x5c#'objectif est de former des mathématiciens pouvant travailler dans les métiers de la recherche qui peut être de nature académique, théorique et/ou appliquée, ou être tournée vers l#0x5c#'innovation et le développement dans le secteur privé.
The goal is to form mathematicians able to work in the research domains ranging from the academic research (both theoretical and applied) to the innovation and developpement in the private sector.
Lieux des enseignements
Université Paul Sabatier, Toulouse. Quelques modules peuvent avoir lieu à l#0x5c#'ISAE ou à l#0x5c#'INSA.
Université Paul Sabatier. Some courses may be be taught at INSA or ISAE (Toulouse).
Etablissements partenairesISAE
- SUPAERO
- Institut Supérieur de l#0x5c#'Aeronautique et de l#0x5c#'EspaceINSA
- Institut National de Sciences Appliquées de Toulouse
Maîtriser différents outils et concepts mathématiques nécessaires à l#0x5c#'exercice des métiers de la recherche en mathématiques. To master different mathematical tools and concepts needed in the research
- oriented activities in mathematics.Comprendre un problème et le modéliser mathématiquement en vue de sa réalisation effective complète. To understand a problem and model it mathematically with aim to its complete and effective realization.
Trouver et s#0x5c#'approprier de nouveaux outils et concepts mathématiques notamment par la lecture de documents en anglais. To find and understand new mathematical tools and concepts in particular by means of reading english mathematical documents.
Restituer clairement un contenu mathématiques, avec un outil adapté, à l#0x5c#'oral et à l#0x5c#'écrit. To expose clearly a mathematical content, using an adapted tool both orally and in a written form.
Prouver une propriété ou un algorithme en déployant une preuve mathématique. To prove a property or an algorithm by providing a mathematically rigourous proof.
Centre(s)
  • Toulouse (31)
À découvrir
Master 2 Mathématiques et Applications Parcours Agrégation de mathématiques par UNIVERSITE DE BORDEAUX - COLLÈGE SCIENCES ET TECHNOLOGIES
Master 1 Mention Mathématiques et applications - Mathématiques fondamentales par UNIVERSITE DE BORDEAUX - COLLÈGE SCIENCES ET TECHNOLOGIES
Master mention mathématiques et applications parcours mathématiques fondamentales par UDS - SFC
Master mention Mathématiques et Applications Parcours Mathématiques Fondamentales par UBO SUFCA
Master 2 Mention Mathématiques et applications - Parcours Analyse, EDP, probabilité par UNIVERSITE DE BORDEAUX - COLLÈGE SCIENCES ET TECHNOLOGIES
Master 1 Mention Mathématiques et applications - Parcours Analyse, EDP, probabilité par UNIVERSITE DE BORDEAUX - COLLÈGE SCIENCES ET TECHNOLOGIES
Master sciences, technologies, santé mention mathématiques et applications par UNIVERSITE CLAUDE BERNARD LYON 1
Master 2 Mathématiques et applications - Parcours Algèbre, géométrie et théorie des nombres par UNIVERSITE DE BORDEAUX - COLLÈGE SCIENCES ET TECHNOLOGIES
Master sciences et technologies mention mathématiques et applications parcours didactique des mathématiques par Aix Marseille Université - AMU
Master sciences et technologies mention mathématiques et applications parcours mathématiques fondamentales par Aix Marseille Université - AMU